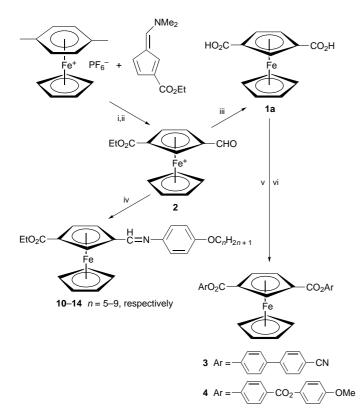
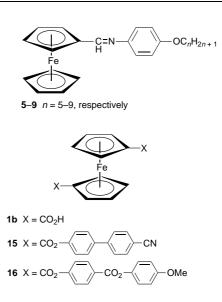
Syntheses of Ferrocene Derivatives with Potentially Mesogenic Functional Substituents


W. Edward Lindsell* and Lin Xinxin

Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK


Ferrocenyl imines, $Fe\{\eta^5-C_5H_4CH=NC_6H_4OC_nH_{2n+1}-4\}\{\eta^5-C_5H_5\}$ and $Fe\{\eta^5-C_5H_3-1-(CO_2Et)-3-(CH=NC_6H_4O-C_nH_{2n+1}-4)\}(\eta^5-C_5H_5)$ (n = 5-9) produced from formylferrocene and 1- (ethoxycarbonyl)-3- (formyl) ferrocene, respectively, and some diaryl esters of ferrocenedicarboxlic acids have been synthesised and characterised by analysis and spectroscopy.

There is considerable interest in metal-containing liquid crystalline materials¹ and a number of mesogenic compounds containing the ferrocene moiety has been made in recent years, including monofunctionalised, 1,3- and 1,1'-difuntionalised and trifunctionalised systems.³ We are interested in developing mesogenic ferrocene entities with suitable substituents for inclusion as side-chains in polymers. In this paper we report syntheses and characterisation of some precursor compounds.

Various 1,3-ferrocene diesters with enantiotropic mesophases have previously been prepared from ferrocene-1,3dicarboxylic acid (**1a**), but the only reported route to the precursor diacid involves a lengthy set of sequential reactions from ethylferrocene.^{3,15} We have used a simpler, more versatile route to 1,3-disubstituted ferrocenes from (η^{5} cyclopentadienyl)(η^{6} -*p*-xylene)iron(II) hexafluorophosphate, easily prepared from unsubstituted ferrocene, and 2-(ethoxycarbonyl)-6-(dimethylamino)pentafulvene, see Scheme 1.¹⁶ The initial product, following work-up by hydrolysis, is 1-(ethoxycarbonyl)-3-(formyl)ferrocene (**2**) and this can be

Scheme 1 Reagents: i, $h\nu$, ii, NaOH_{ag}-EtOH; iii, Ag₂O-NaOH; iv, H₂NC₆H₄OC_nH_{2n + 1}-4; v, (COCI)₂; vi, HOAr

used directly to form other 1,3-substituted derivatives by reactions at the aldehydic and/or ester functions. Alternatively, 2 is readily oxidised by silver(1) to ferrocene-1,3-dicarboxylic acid (1a) from which 1,3-diesters and related ferrocenes are preparable.

Using 2 as a precursor, the new derivatives 10-14 were prepared. Also, for synthetic and spectroscopic comparisons, the imines 5-9 were obtained from formyl ferrocene. Moreover, we produced diester derivatives from 1a, including the previous uncharacterised species 3 and 4, and the related 1,1'-isomers 15 and 16 from ferrocene-1,1'-dicarboxylic acid.

The new compounds were characterised by analytical measurements and by IR, ¹H and, in some cases, ¹³C NMR spectra. NMR resonances were assigned and include typical signals for the aromatic, imine and ester nuclei; e.g. [Fe{ η^5 - $1,3-C_5H_3(CO_2Et)(CH=NC_6H_4OC_5H_{11}-4)$ $(\eta^5-C_5H_5)$ (10) δ_H (CDCl₃) 0.9 (br, 3 H, CH₃), 1.4 (complex, 7 H, CH₂ and CH₃), 1.8 (m, 2 H, CH₂), 3.95 (~t, 2 H, OCH₂), 4.98, 5.07 and 5.40 (br, 3 H, H-2, -4, -5 of C_5H_3), 6.9 and 7.1 (AA'BB' m, 4, H, C₆H₄), 8.30 (s, 1 H, CH=N); $\delta_{\rm C}$ (¹³C{¹H}; CDCl₃) 14.0 and 14.5 (CH₃), 22.4, 28.2 and 29.0 (CH₂), 60.4 and 68.3 (OCH₂), 70.9 (C₅H₅), 70.7, 71.1 and 72.5 (CH, C-2, -4, -5 of C₅H₃), 74.0 (quat.-C, CCO₂Et of C₅H₄), 83.8 (quat.-C, CCH=N of C₅H₄), 115.1 and 121.7 (arom.-CH), 145.2 (quat. arom.-C), 157.3 (CH=N), 157.6 (quat. arom.-C), 170.6 (CO). Visual observations of the thermal properties of the isolated compounds, using a hot-stage microscope, do not indicate well defined thermotropic mesogenic properties for most of the products, but attachment of an array of these entities as side chains to a functionalised polymer backbone by linking to the second substituent of a di-substituted ferrocene may generate liquid crystalline polymers.

J. Chem. Research (S), 1998, 62–63 J. Chem. Research (M), 1998, 0423–0433

^{*}To receive any correspondence (e-mail: W.E.Lindsell@hw.ac.uk).

L. X. thanks the Chinese Government for support. We also thank Professor J. M. G. Cowie, Heriot-Watt University, for helpful discussions.

Techniques used: IR, $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR, thermal polarising optical microscopy

Tables: 1 (yields, melting points and analytical data for ferrocene derivatives)

References: 23

Received, 13th August 1997; Accepted, 7th October 1997 Paper E/7/05941H

References cited in this synopsis

- E.g., see: S. A. Hudson and P. M. Maitlis, *Chem. Rev.*, 1993, 93, 861; A.-M. Giroud-Goquin and P. M. Maitlis, *Angew. Chem.*, *Int. Ed. Engl.*, 1991, 30, 375; D. W. Bruce, *J. Chem. Soc.*, *Dalton Trans.*, 1993, 2983.
- 3 E.g., see: R. Deschenaux and J. W. Goodby, *Ferrocenes*, 1995, ed. A. Togni and T. Hayashi, VCH, Weinheim, ch. 9 and references cited therein.
- 15 (a) A. N. Nesmeyanov, E. V. Leonova, N. S. Kochetkova, A. I. Malkova and A. G. Makarovskaya, J. Organomet. Chem., 1975, 96, 275; (b) M. Hisatome, O. Tachikawa, M. Sasho and K. Yamakawa, J. Organomet. Chem., 1981, 217, C17; A. Kashara, T. Izumi, Y. Yoshida and I. Shimizu, Bull. Chem. Soc. Jpn., 1982, 55, 1901.
- 16 P. Bickert, B. Hildebrandt and K. Hafner, *Organometallics*, 1984, **3**, 653.